

Team Developer™

.NET Projects

Product Version 7.0

2

Team Developer™: .NET Projects

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1
Tel: +1-519-888-7111 Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440

Fax: +1-519-888-0677
Support: http://support.opentext.com
For more information, visit https://www.opentext.com

Copyright © 2016 Open Text. All rights reserved. OpenText is a trademark or registered trademark of Open
Text. The list of trademarks is not exhaustive of other trademarks, registered trademarks, product names,

company names, brands and service names mentioned herein are property of Open Text or other respective
owners.

Disclaimer

No Warranties and Limitation of Liability. Every effort has been made to ensure the accuracy of the features
and techniques presented in this publication. However, Open Text Corporation and its affiliates accept no
responsibility and offer no warranty whether expressed or implied, for the accuracy of this publication.

Warning: This software is protected by copyright law and international treaties. Unauthorized reproduction or
distribution of this program, or any portion of it, may result in severe civil and criminal penalties, and will be
prosecuted to the maximum extent possible under the law.

http://support.opentext.com/
https://www.opentext.com/

3

Table of Contents

Chapter 1 – Introduction to .NET Projects ...5

.NET Build Settings... 5

.NET Target Types... 5

Other Settings ... 6

64-bit Applications... 6

Signing Assembly .. 6

Compiling Process Overview ... 7

What Team Developer Does ... 7

Compiling from the Command Line .. 8

Data Type Matching ... 9

.NET Source Code.. 9

GUI Functions in DLLs ... 10

Chapter 2 – Libraries and Functions ..11

QuickObjects .. 11

QuickTab2Tab Tool.. 11

Visual Toolchest.. 13

Stand-Alone Functions .. 13

VT Libraries .. 14

External Libraries and APIs in General .. 15

Datatypes in External DLLs ... 15

user32.dll Not Supported in .NET... 15

Assembly Information for APLs... 15

Unsupported SAL Functions ... 16

Unsupported APLs... 18

Supported WM_* Messages ... 18

Chapter 3 – WPF Applications..20

WPF Applications... 20

XAML Files .. 21

Customizing XAML files... 22

Deploying WPF Desktop Applications .. 23

WPF Browser Applications in Firefox... 23

WPF Browser Applications in Internet Explorer ... 24

Chapter 4 – Publishing XBAP Applications ..25

Publishing XBAP Applications (WPF Browser) .. 25

4

Build Settings for WPF Browser Application... 25

Publishing a WPF Browser Application to IIS ... 27

IIS Troubleshooting .. 28

Database Proxy Service ... 29

Chapter 5 – WPF Controls...31

Custom WPF Control in Team Developer .. 31

WPF Functions .. 31

WPF Events... 31

Debugging Applications with WPF Controls.. 32

Gauges... 32

Examples.. 33

Chapter 6 – Connectivity in .NET Applications...34

Connecting to Oracle .. 34

Connecting to SQLServer .. 35

SQL Server TIMESTAMP.. 37

SQLBase.. 38

Chapter 7 – .NET Explorer ..39

Using .NET Explorer.. 39

About AXLs, APLs, DLLs .. 41

Definitions... 41

.NET Explorer Generates APL and AXL .. 41

.NET SAL Library Generates DLL and AXL .. 42

Variables Based on Imported .NET Classes .. 42

.NET Assemblies Created in Visual Studio .. 42

Chapter 8 – Debugging DLLs ...43

.NET Class Libraries .. 43

.NET Web Services ... 46

.NET SAL Libraries... 48

5

Chapter 1 – Introduction to .NET Projects

This chapter provides an overview of the .NET portion of the build settings dialog box. It also contains a
conceptual explanation of the compiling process that enables you to create a .NET application with Team
Developer.

.NET Build Settings

The Build Settings dialog box is accessed by selecting “Build Settings” from the Project menu (see the “Project
Menu” section of the Developing With SQLWindows document). The right side of this dialog box contains
options for .NET build settings. These options and settings are explained in the sections that follow.

.NET Target Types

 .NET WPF Desktop (EXE)—A WPF application that runs from the desktop.

 .NET WPF Browser (XBAP)—A WPF application designed to run in a browser.

 .NET Class Library (DLL)—A class library used in developing other applications.

 .NET SAL Library (DLL)—The WPF equivalent for the dynalib compiler option in Win32 mode.

6

 .NET Web Service (DLL)—A .NET Web service that can be hosted on IIS.

You can also compile from the command line, including parameters to specify the build target. For examples,
see “Compiling Process Overview” on page 7.

Other Settings

Target Name—Used to indicate the name of the application, class library, or Web service you are going to
build.

Target Directory—The directory where your build will be saved.

64-bit Applications

The Advanced button on the build settings dialog brings up a new Advanced Settings dialog box. In this
dialog, the user can choose a value for the Target CPU:

 32bit: The application will always be 32-bit. On a 64-bit OS, applications run within the 32-bit subsystem.

 64bit: The application will always be 64-bit and can only run on a 64-bit machine.

 Auto: The application will decide what bitness to use at launch time, depending on the OS. For DLLs, the
bitness depends on the process loading them.

There is a new command-line argument to TD for specifying the target CPU when compiling from a DOS
prompt. The syntax for the new flag is "-cpu:32bit", "-cpu:64bit", or "-cpu:auto", as follows:

cbi62.exe -.net:WPFDesktop -cpu:64bit test.apt test.exe

cbi62.exe -.net:WPFDesktop -cpu:32bit test.apt test.exe

cbi62.exe -.net:WPFDesktop -cpu:auto test.apt test.exe

Signing Assembly

The Advanced button on the build settings dialog brings up a new Advanced Settings dialog box. In this
dialog, the user can specify the Strong Name Key file (*.snk). The .NET compiler signs the assembly using the
.snk file.

7

Compiling Process Overview

.NET applications are compiled from Intermediate Language (IL). To create a .NET application from a Team
Developer outline, your SAL code must be converted to IL and compiled into a .NET product. With Team
Developer 6.0, Gupta introduced a new IL compiler that performs these functions for you.

To create a .NET product with Team Developer, execute the following steps:

1. Write your application in Team Developer as usual, using SAL code.

2. In the Project menu, select Build Settings to access the Advanced Settings dialog box.

3. Choose a .NET target type, and specify a target name and directory.

You can also compile from the command line. See “Compiling from the Command Line” on page 8 for
information and examples.

What Team Developer Does

Once you select a .NET target type, build your project as usual. Team Developer turns your Team Developer
outline into a .NET application, class library, or Web service.

 Library inclusions:

Any libraries you created and included are made available to the compiler.

 Functions from APLs:

Gupta-provided libraries are not included. Instead, .NET implementations of these libraries’ functions are
created individually. Team Developer and the IL compiler ignore your include statements for these
libraries and incorporates the .NET implementations where functions from these libraries are called.

 IL compile:

The IL compiler receives your SAL code, included APLs, and the .NET implementations of Gupta functions
you called in your application. These elements are converted to IL and compiled.

 Finished product:

Your .NET project is built and saved with the directory and filename you specified in the Build Settings
dialog box. Team Developer uses the standard output window to report any errors.

The following diagram illustrates this process:

8

Compiling from the Command Line

The following are example commands for compiling from the command line.

 To compile using the standard TD native compiler (Win32 application):

cbi62.exe -b test.app test.exe

 To compile a WPF desktop application:

cbi62.exe -.net:WPFDesktop test.app test.exe

or

cbi62.exe -.net:AutoDesktop test.app

 To compile a WPF browser application:

cbi62.exe -.net:WPFBrowser test.app test.exe

or

cbi62.exe -.net:AutoBrowser test.app

 To compile a .NET SAL library:

cbi62.exe -.net:SALLibrary test.apl test.dll

 To compile a .NET Class library:

cbi62.exe -.net:ClassLibrary test.apl test.dll

9

For an application to compile correctly from the command line, the command must match the application’s
build target (from the Build Settings dialog box). The following table shows the results of each .NET command
line switch when used on an application with the indicated build target.

.NET Command Line Switch Application’s Current Build Setting Result

.net:WPFDeskTop win 32 EXE, .NET WPF Desktop, .NET WPF
Browser

.NET WPF Desktop

All others .err (error file)

.net:WPFBrowser win 32 EXE, .NET WPF Desktop, .NET WPF
Browser

.NET WPF Browser

All others .err (error file)

.net:ClassLibrary Include Library, .NET Class Library .NET Class Library

All others .err (error file)

.net:SALLibrary Dynalib, .NET SAL Library .NET SAL Library

All others .err (error file)

.net:AutoDeskTop win 32 EXE, .NET WPF Desktop, .NET WPF
Browser

.NET WPF Desktop

Include Library, .NET Class Library .NET Class Library

Dynalib, .NET SAL Library .NET SAL Library

All others .err (error file)

.net:AutoBrowser win 32 EXE, .NET WPF Desktop, .NET WPF
Browser

.NET WPF Browser

Include Library, .NET Class Library .NET Class Library

Dynalib, .NET SAL Library .NET SAL Library

All others .err (error file)

Data Type Matching

Native Team Developer applications allow for some mixing of data types. For example, a number variable can
contain a window handle. In .NET build targets, this type of mismatch causes a compiler error.

.NET Source Code

The IL compiler does not generate C# or other Microsoft source code. Team Developer contains a true .NET
compiler that compiles the SAL language directly to

.NET Intermediate Language. The only IDE that can edit and compile SAL code is Team Developer.

10

There is a size limitation to TD code when being compiled to .NET. This comes from the Microsoft .NET
Assembler, whose memory usage can climb over 2GB if the application is large enough. In TD, it seems to be
around 650,000 outline items. Using the 64-bit version of the assembler (which TD will do when possible)
removes the size limitation.

Compiling to .NET4 seems to shrink the size of the IL, buying the user a little more time, perhaps allowing a
700,000-800,000 outline item application before the memory limit is reached.

GUI Functions in DLLs

.NET class libraries, .NET SAL libraries and .NET Web services do not support GUI objects. Team Developer
applications that use GUI functions report warnings when the application is built as a .NET class library or a
.NET SAL library. Team Developer applications that use GUI functions report errors when built as a .NET Web
service dll.

11

Chapter 2 – Libraries and Functions

This chapter provides information about which libraries and functions are supported by Team Developer for
.NET projects for the following:

 QuickObjects

 Visual Toolchest

 External libraries and APIs in general

 Unsupported SAL functions

 Unsupported APLs

 Supported WM_* messages

QuickObjects

With the exception of QuickGraphs, QuickObjects are not supported for .NET projects. However, the
QuickTab2Tab tool enables you to convert your QuickTabs to native Team Developer Tab Controls. The native
Tab Control is supported for .NET projects.

QuickTab2Tab Tool

Use this tool to prepare an application for .NET deployment. Conversion from QuickTabs to native Tab
Controls is not required for Win32 applications.

The QuickTab2Tab tool (qtab2tab.exe) is located in the root directory of your Team Developer installation. To
convert an application’s QuickTabs to native Team Developer tab controls, execute the following steps:

1. Make a copy of the target application and included libraries (qtab2tab.exe overwrites files; it does not
create copies).

2. Find qtab2tab.exe in your Team Developer installation directory and double-click it to launch the
QuickTab2Tab conversion tool.

3. Using the explorer tree at the left, find the directory that contains the application file you want to
convert.

4. (Optional) Use the “All Outline Files” dropdown box to filter the displayed files by file type.

5. In the list at the right, select the file you want to convert and click Convert Selected File.

Application conversion cannot be done in pieces. To convert an application and its included libraries, convert
the top-level .app file. QuickTab2Tab finds the necessary libraries and converts them as well.

The QuickTab2Tab tool reads and converts the required files. During the process, you will see progress bars
like the one pictured below. A message box informs you when conversion is complete.

12

When conversion is complete, your application file and any included libraries that contained QuickTabs will
have been overwritten. The updated files will contain native Team Developer tab bar controls, and any files
that previously included qcktabs.apl and pagelist.apl will now include qtab2tab.apl.

QuickTab2Tab does not migrate classes derived from cSWTabs or cTabPageList. These must be done manually.

The following QuickTab functions are not supported for QuickTab2Tab conversion:

CancelMode Delete FindName

GetContentsBorderRect GetContentsRect GetContentsRectPixels

GetDrawStyle GetMarginRect GetMinimumWidth

GetName GetRowCount IndexFromPoint

InitFromProps Insert SetDrawStyle

SetMinimumResizeSize SetName SetRowCount

SetWorkspaceBoundary ShowSiblings

13

Visual Toolchest

The Visual Toolchest consists of several class libraries and many stand-alone functions. Most of the stand-

alone functions are implemented for .NET compatibility, but some are not. Visual Toolchest class libraries are
mostly unsupported, with a couple of exceptions.

Even when a Visual Toolchest class library is supported, there is no mechanism for accessing variables in
imported .NET assemblies. Thus, it is not possible to directly access member variables of a Visual Toolchest
class when building to .NET.

Stand-Alone Functions

The following stand-alone Visual Toolchest functions are supported for .NET projects:

vtarray.apl

VisArrayAppend VisArrayCopy
 VisArrayDeleteItem
VisArrayFillDateTime

VisArrayFillNumber
VisArrayFillString
VisArrayFindDateTime
VisArrayFindNumber

VisArrayFindString
VisArrayInsertItem VisArraySort

vtdebug.apl

VisDebugBeginTime
VisDebugEndTime
VisDebugGetFlags

VisDebugSetFlags
VisDebugSetLevel

VisDebugSetTime
VisDebugString

vtdos.apl

VisDosBuildFullName
VisDosEnumDirInfo
VisDosEnumDirs
VisDosEnumDrives
VisDosEnumFileInfo
VisDosEnumFiles
VisDosEnumPath
VisDosExist

VisDosIsParent
VisDosGetCurDir
VisDosGetDriveSize
VisDosGetDriveType
VisDosGetEnvString
VisDosGetFlags
VisDosGetNetName

VisDosGetVersion
VisDosGetVolumeLabel
VisDosMakeAllDir
VisDosMakePath
VisDosSetFlags
VisDosSplitPath
VisDosSetVolumeLabel

vtfile.apl

VisFileAppend
VisFileClose
VisFileCopy
VisFileCreateTemp
VisFileDelete
VisFileExpand
VisFileFind
VisFileGetAttribute

VisFileGetSize
VisFileGetType
VisFileOpen
VisFileRead
VisFileReadBinary
VisFileReadString
VisFileRename
VisFileSetAttribute

VisFileSetDateTime
VisFileSeek
VisFileTell
VisFileWrite
VisFileWriteBinary
VisFileWriteString

vtmenu.apl

VisMenuCheck
VisMenuDelete
VisMenuDisable
VisMenuEnable
VisMenuGetCount
VisMenuGetHandle

VisMenuGetPopupHandle
VisMenuGetText
VisMenuIsChecked
VisMenuIsEnabled
VisMenuInsert
VisMenuInsertFont

VisMenuInsertPicture
VisMenuSetFont
VisMenuSetPicture
VisMenuSetText
VisMenuUncheck

14

vtmisc.apl

VisGetVersion
VisGetWinFlags

VisGetWinVersion
VisSendMsgStrin

VisNumberChoose
VisProfileEnumStrings

vtstr.apl

VisStrChoose
VisStrExpand
VisStrFind
VisStrFreeTable
VisStrLeftTrim

VisStrLoadTable
VisStrPad
VisStrProper
VisStrRightTrim

VisStrScanReverse
VisStrSubstitute
VisStrTrim
VisStrPadB

vttblwin.apl

VisTblClearColumnSelection VisTblFindDateTime

vtwin.apl

VisWinClearAllFields
VisWinClearAllEditFlags
VisWinFreeAccelerator
VisWinGetFlags
VisWinGetHandle
VisWinGetStyle
VisWinGetText

VisWinIsChild
VisWinIsMaximized
VisWinIsMinimized
VisWinIsRequiredFieldNull
VisWinIsRestored
VisWinIsWindow

VisWinLoadAccelerator
VisWinMove
VisWinSetFlags
VisWinSetStyle
VisWinSetTabOrder
VisWinShow

VT Libraries

The following Visual Toolchest class libraries and associated base classes are supported for .NET projects.
Other Visual Toolchest class libraries are not supported.

vtcomm.apl

Base classes: sPoint, sRect, sSize.

vtsplit.apl

Base classes: cSplitter, cSplitterWindow.

vtmeter.apl

Base classes: cMeter

vtcal.apl

Base classes: cCalendar, cCalendarDropDown

Currently no methods are supported for vtcal.apl.

vtlbx.apl

Base classes: cOutlineListBox, cPictureListBox, cRadioListBox, cColorListBox

15

External Libraries and APIs in General

Datatypes in External DLLs

When using an external DLL in a .NET project and calling its functions, remember that native TD/SAL C
datatypes are not supported as return values, parameters or receive parameters. These datatypes include:

 DATETIME

 HFILE

 HUDV

 HWND *see note below

 HSESSIONHANDLE

 HSQLHANDLE

 LPDATETIME

 LPHFILE

 LPNUMBER

 LPSESSIONHANDLE

 LPHSQLHANDLE

Only primitive C/C++ types are supported, with the exception of HARRAY, HUDV, and STRUCTPOINTER, which
are not supported.

WPF applications use object references rather than window handles. Modernizing your application to .NET
and moving to WPF means moving away from manipulating windows via API calls. Fortunately, the
functionality you acquired via external APIs in the past is probably available in native SAL code now.

user32.dll Not Supported in .NET

This is a Win32 DLL and cannot be made to work in .NET.

Assembly Information for APLs

Team Developer contains .NET assembly information for the following APLs. This is not a list of fully-
supported APLs in .NET. Rather, these are APLs that will not cause compiler errors when included in a .NET
project. Because assembly information is available, the project will compile. You will also see the symbol
information in the External Assemblies section of the outline. In most cases, however, the assembly
information will not include every function in the APL.

You can check if an APL has assembly information by doing the following:

1. Open the APL.

2. Right-click its name at the top of the tree view and select Properties.

3. Click the Assembly File tab. If text appears in the field under “Assembly Import File”, Team Developer has
assembly information for this APL.

Automation.apl VTComm.apl

16

cgmail.apl
cdk.apl
CStructL.apl
GTableX.apl
ODBSal32.apl
QckDVC.apl
QckMail.apl
QckTabs.apl
SalMail.apl
sqlnwkcn.apl
VTArray.apl
VTComDlg.apl

VTDebug.apl
VTDOs.apl
VTFile.apl
VTLbx.apl
VTlstvw.apl
VTMenu.apl
vtmeter.apl
VTMisc.apl
vtsplit.apl
VTStr.apl
VTTblWin.apl
xmllib.apl

Unsupported SAL Functions

The following SAL functions are not supported for .NET build targets:

SalActiveXAutoErrorMode SalActiveXCreateFromData

SalActiveXCreateFromFile SalActiveXDelete

SalActiveXGetData SalActiveXGetFileName

SalActiveXInsertObjectDlg SalActiveXOLEType

SalAppFind SalContextBreak

SalCreateWindowExFromStr SalCreateWindowFromStr

SalDDEAddAtom SalDDEAlloc

SalDDEDeleteAtom SalDDEExtract

SalDDEExtractCmd SalDDEExtractDataText

SalDDEExtractOptions SalDDEFindAtom

SalDDEFree SalDDEGetAtomName

SalDDEGetExecuteString SalDDEPost

SalDDERequest SalDDESend

SalDDESendAll SalDDESendExecute

SalDDESendToClient SalDDESetCmd

SalDDESetDataText SalDDESetOptions

SalDDEStartServer SalDDEStartSession

SalDDEStopServer SalDDEStopSession

SalDropFilesQueryPoint SalEditCanPasteLink

SalEditCanPasteSpecial SalFontGetSizes

SalGetTypeEx SalHBinaryToNumber

SalHtmlHelp SalIdleKick

17

SalIdleRegisterWindow SalIdleUnregisterWindow

SalModalDialogFromStr SalMTSCreateInstance

SalMTSDisableCommit SalMTSEnableCommit

SalMTSGetObjectContext SalMTSIsCallerInRole

SalMTSIsInTransaction SalMTSIsSecurityEnabled

SalMTSSetAbort SalMTSSetComplete

SalNumberToHBinary SalObjIsNull

SalOutlineChildOfType SalOutlineCurrent

SalOutlineItemOfWindow SalOutlineItemTypeText

SalReportClose SalReportCreate

SalReportGetRichTextVar SalReportSetRichTextVar

SalRibbonSetItemTransparent Color SalStaticFirst

SalStaticGetSize SalStaticSetSize

SalStrToMultiByte SalStrToWideChar

SalTabSetPageTransparentColor SalTblSetColumnXMLAttributes

SalTblSetView SalTblQueryView

SalWindowGetDockSetting SalWinGetStyle

SalXMLDeserializeUDV SalXMLGetLastError

SalXMLSerializeUDV SalYieldEnable

SalYieldQueryState SalYieldStopMessages

SalYieldStartMessages SqlClose

SqlCloseAllSPResultSets SqlCloseResultSet

SqlConnectTransaction SqlContextSetToForm

SqlDeleteConnectionString SqlDropStoredCmd

SqlFindIniFile SqlGetConnectionStrings

SqlGetCmdOrRowsetPtr SqlGetCursor

SqlGetErrorPosition SqlGetDSOrSessionPtr

SqlGetLastStatement SqlGetRollbackFlag

SqlGetStatementErrorInfo SqlImmediateContext

SqlListConnections SqlOpen

SqlOraPLSQLStringBindType SqlRetrieve

SqlStore SqlWriteConnectionString

18

Unsupported APLs

The following APLs are not supported in Team Developer 6.2.

axtmpl.apl

cdk.apl

cdkfwrk.apl

cgmail.apl

gtablex.apl multitbl.apl

pagelist.apl

swbidi32.apl

TlNotify.apl

ttmngr.apl

Supported WM_* Messages

In WPF applications, the following WM_* messages are supported for the window types listed.

 WM_LBUTTONDOWN

Button Check Box Option Data Field

Rich Text Box List Box Picture Box

Child Grid/Child Table/Table Window/Grid Window

 WM_RBUTTONDOWN

Form/Dialog

All controls except:

Data Fields

Multi-line text Tab bar Navigation Bar

 WM_LBUTTONUP

Button Check Box Data Field

Rich Text Box Combo Box

 WM_RBUTTONUP

Child Grid Child Table Grid Window Table Window

 WM_CHAR

All field controls (Data Field, Combo Box, Multiline, Rich Text, Column) Child Grid

Child Table Table Window Grid Window

 WM_KEYUP

All controls except:

Pushbutton

Picture Tab bar

Navigation bar

Top Level Grid Window Top Level Table Window

19

 WM_KEYDOWN

Data Field Rich Text Box Child Grid

Child Table List Box Combo Box

Column

 WM_LBUTTONDBLCLK

Data Field Rich Text Box Combo Box

 WM_RBUTTONDBLCLK

Not supported in WPF.

 WM_MOUSEMOVE

Not supported in WPF.

 WM_KILLFOCUS

Data Field Rich Text Box

 WM_SIZE

Form/Dialog MDI

20

Chapter 3 – WPF Applications

This chapter discusses WPF applications and their associated files, describes WPF desktop and browser
applications, and explains XAML files and how to customize them.

WPF Applications

The Build Settings dialog box provides two WPF options: WPF Desktop and WPF Browser. These two options
are virtually the same. The resulting applications are identical except that one can be deployed on the
desktop and the other is hosted in a browser.

Best practices for WPF applications include the following:

 Names of WPF Browser applications cannot contain some punctuation characters, such as [(open
bracket) and] (close bracket).

 Certain keywords in your application file name will cause a “User Account Control” warning in Windows
when you try to run the application. Avoid words like “install,” “setup,” and “update” in your file name.

 WPF applications cannot have two top-level items with the same name. This includes an MDI window and
its child form window, which are both considered top-level when compiling to .NET.

 WPF applications cannot include a library with the same name as the application. For example, you
cannot call a library called foo.dll from an application called foo.exe.

 WPF does not have a notion of a cache, so SAM_CacheFull will never fire in a WPF application.

 Because WPF Browser applications run inside a browser window, SAM_Close and WM_Close messages do
not succeed. Instead, use SalDestroyWindow.

 In WPF applications, SalReportView launches an independent instance of Report Builder (rather than a
runtime preview window).

 If the .NET 4.0 framework is installed, you will not be able to debug WPF browser applications. To avoid
this problem, use the .NET 3.5 framework or debug your applications using the WPF desktop build target.
(Microsoft will probably release a fix for this bug soon.)

 When debugging WPF applications, Step Into and Step Over work differently than in Win32. You will need
to set a distinct break point for each message or event in WPF, or else an attempt to “Step Into” might
result in a “Step Over.”

 To run TD60 WPF applications using ADOProxy running on 64-bit machine, you must enable 32-bit
Applications mode on IIS. To do this, follow these steps:

a. Click View Application Pools.

b. Set Application pool defaults.

c. Set Enable 32-bit Applications to TRUE.

21

XAML Files

XAML is an XML-based markup language developed by Microsoft. It is the language behind the visual
presentation of WPF applications. XAML is similar to HTML in that it is text based and tag based, and it
determines the look and structure of a project. In the case of HTML, the project is a webpage. In the case of
XAML, the project is an application. In TD, XAML files determine the visual aspects of a TD application
deployed as WPF.

When you compile a TD application with a WPF build target, XAML data is automatically created, although it
is not exposed as independent files. If you decide to customize the XAML, f iles are created in your project
directory for you to view and edit (see Customizing XAML files, which follows). These XAML files contain code
that specifies the layout, structure, size, colors, etc. of the various windows, buttons, and other visual
elements in your application. A .xaml file is created for each top-level dialog box, form window, MDI window,
grid window, and table window.

The following screenshots show a simple form window as it appears in the Team Developer outline and
layout, and the resulting XAML file as viewed in the editor provided with Team Developer.

22

Customizing XAML files

The previous screenshot of the XAML file shows the file being viewed in the Kaxaml-based editor that ships
with Team Developer. You can access Kaxaml through Team Developer by right-clicking on a parent window of
any type in the outline or layout view. In the right-click menu that appears, select Custom XAML and then Edit
custom XAML...

When you select “Edit custom XAML,”a new .xaml folder is created in your project directory, and it is
populated with .xaml files for your project. Kaxaml launches, and you can use it to view and edit the .xaml
files (select “Open” from the file menu, find the new .xaml directory, and select the file you want to
view/edit).

Best practices for customizing XAML files include the following:

 When customizing XAML files for Team Developer applications, use the XAML editor provided with Team
Developer.

 Use the method mentioned above to access custom XAML files (right-click/ Custom XAML/Edit custom
XAML). Running Kaxaml.exe independently or opening .xaml files via Windows Explorer bypasses
necessary information exchange between Team Developer and Kaxaml; for example, location of
internally-stored application images.

 If you make significant user interface changes in your Team Developer outline after you have customized
your XAML files, update your XAML files by following these steps:

a. Rename your .xaml directory so that the IL compiler will not recognize it.

b. Compile your project.

c. Right-click a parent window in your outline, select Custom XAML and then Edit custom XAML. This
will create new .xaml files.

d. Using a comparison tool, compare the new .xaml files with your old customized files (in the directory
you renamed). You will see differences that correspond with the changes you made in Team
Developer, and you will also see differences where you customized your old files.

e. Copy the desired customizations from your old customized files to the new files. The files in the .xaml
directory are now customized.

f. Compile your project. The IL compiler uses the files in your .xaml directory.

g. (Optional) Delete the directory you renamed in step a.

 Do not make the following types of changes in your custom XAML files:

 Do not add new controls that do not correspond to controls in your Team Developer application
outline.

 Do not rearrange the order of controls.

 Do not rename controls.

 Do not change event handlers.

More Information about XAML

For more information about XAML in WPF, see Microsoft’s documentation at http://msdn.microsoft.com/en-
us/library/ms747122.aspx

http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://msdn.microsoft.com/en-us/library/ms747122.aspx

23

Deploying WPF Desktop Applications

To deploy your WPF desktop applications to users, you must create an installer by following these steps:

1. Select Create Installer from the Project menu. This menu option is disabled unless your build target is set
to WPF Desktop.

The Create Installer dialog box opens.

The fields in this dialog box are automatically populated with information you entered in the Version tab
of the Build Settings dialog box. Most of these fields are optional. Add, delete, or edit text as you see fit.

2. If your application requires SQLBase connectivity, check the “Include SQLBase Client Modules” check box.
Otherwise, leave this box unchecked.

Your project’s sql.ini file is packaged in the installer. Therefore, if your sql.ini uses “localhost” in its
serverpath setting, you must change this setting to point to the SQLBase database you plan to use; for
example, an IP address.

3. If your application requires Report Builder functionality, check the “Include ReportBuilder installer” check
box. This allows your users to install a limited version of Report Builder. They can access all the
functionality required for your application, but cannot create new reports or run Report Builder
independently. If your application does not require Report Builder functionality, leave this check box
unchecked.

4. Click Generate and wait a few moments. The “Generate Finished” message appears, and the installer is
placed in your application directory.

WPF Browser Applications in Firefox

To use the Firefox browser to run WPF Browser applications, you must install a Firefox plugin. To check if you
have the plugin, use the script at http://msdn.microsoft.com/en-us/library/bb909867.aspx.

http://msdn.microsoft.com/en-us/library/bb909867.aspx

24

If you do not have the script, do the following:

 Windows XP/Vista Users

Install the latest .NET 3.5 framework (with available service packs). Try the script from the link again. If
the script still indicates a problem, check the following directory:

C:\Windows\Microsoft.NET\Framework\v3.5\Windows Presentation Foundation

The .NET framework installation should have placed a file named NPWPF.dll in that directory. Copy that
file to C:\Program Files (x86)\Mozilla Firefox\plugins.

 Windows 7 Users

The .NET 3.5 SP1 framework cannot be installed on a Windows 7 machine. To obtain the necessary
plugin, you must acquire NPWPF.dll—for example, from a Windows XP or Vista machine—and copy it to
the appropriate directory.

WPF Browser Applications in Internet Explorer

Internet Explorer 8 provides an excellent host for WPF browser applications. However, an issue can arise
when using tabbed browsing and closing the tab that is running the application. To avoid this problem, close
Internet Explorer completely when you want to close the application.

On a 64-bit Windows machine, 64-bit Internet Explorer is not the default version. Users need to navigate to
Internet Explorer 64-bit to run Team Developer WPF 64-bit applications. 64-bit Internet Explorer is located at
%ProgramFiles%\Internet Explorer.

25

Chapter 4 – Publishing XBAP Applications

This chapter contains instructions for publishing XBAP applications in WPF Browser.

Publishing XBAP Applications (WPF Browser)

A successfully published application has a starting/index page that looks like the following:

To publish a WPF Browser application, execute the following steps.

Build Settings for WPF Browser Application

If you are running Team Developer in Windows Vista or later, run as Administrator so that Team Developer
has directory sharing permission.

Certificate File settings are established in the Build Target tab in the Build Settings dialog. The certificate file
fields are enabled when you choose .NET WPF Browser as the target type. By default, the compiler uses a
private certificate. This certificate is saved in the build directory specified in the Target Name field, and has
the file name xbap_key.pfx. It is necessary to import this certificate for a WPF browser application to run from
IIS. A WPF application will not download unless you import the certificate that is used to sign the application.

To import the certificate, follow these steps:

1. Open the Build Settings dialog by selecting Project > Build Settings from the menu bar.

2. Select .NET Application.

3. Select .NET WPF Browser (XBAP).

4. Under Target Name, enter the directory where you want to build the application and click OK.

Update the Product Version (in the Version tab) each time you rebuild an application.

26

5. Build the application by selecting Project > Build from the menu bar.

6. Open your application directory in Explorer, open the xbap_key.pfx file, and configure the private
certificate as follows:

a. On the initial screen click Next.

b. Click Next again.

c. Enter the password 12345 (see note below) and click Next.

d. Select Place all certificates in the following store and click Browse.

e. Choose Trusted Root Certification Authorities and click OK.

f. Click Next.

g. Click Finish.

h. Import the same certificate to Trusted Publishers by repeating steps a-h and selecting Trusted
Publishers in step e.

Note: The private certificate provided with Team Developer has a set password of 12345. If you use a
different certificate, you must also use the password of that certificate.

7. Go back to the Build Setting dialog, enter your certificate file's location and password, and click OK.

27

Publishing a WPF Browser Application to IIS

You can deploy a WPF browser application to an IIS 6.0/7.0/7.5 server by selecting Project > Publish from

the menu bar.

The fields have the following functions:

Field Explanation

Server Name IIS server name to deploy the WPF application (IIS 6, IIS 7)

User Name User name who can log into specified IIS server. Must be a member of the
Administrators group.

Password Password for the user

Deploy Database Proxy Server Check this to deploy the database proxy server to the same IIS server along
with the application. The URL of the proxy service is
http://<IIS_Server>/DBPipeServer/DBPipeServer.svc
If you are using SQLBase through a remote Server, before publishing the
XBAP application, edit sql.ini ([win32client.ws32] section) by commenting
out "autostartserverpath".

URL (Database Proxy Server) Specify the database proxy service URL that is already running.

Publish Location You can specify the location on the IIS server to deploy the application. If
this field is blank, the application is deployed to <IIS Root>/<Application
Name>. In most cases <IIS Root> is C:\InetPub\wwwroot.
You can also specify a local or remote folder when you do not specify an IIS
server. This is useful when the WPF application has been deployed and you
know its physical location.

28

Field Explanation

Sign Application Specify your own certificate here. Changes made in this field are reflected
in the Build Settings dialog.

If the proxy server is running, the following page appears when you access the specified URL:

IIS Troubleshooting

Problem: After installing the certificate and launching the application, an error similar to the following is
reported:

Solution: Activate 32-bit applications by following these steps:

1. In the IIS GUI, navigate to the Application Pool.

2. Access Advanced Settings.

3. Set Activate 32-bit Applications to TRUE.

Problem: AdoProxy server is not working as a WCF (Windows Communication Foundation) service.

29

Solution: Because the default IIS configuration does not enable WCF, you must run the following command as
administrator to change this configuration:

cmd /C %FrameworkDir%\\v3.0\\Windows Communication

Foundation\\ServiceModelReg.exe -iru

Database Proxy Service

Database Proxy Server is a Web service that runs on IIS. To run database proxy service correctly, all necessary
database client tools must be installed on the database proxy server machine.

SQLBase Client Setup on IIS Server

Follow these steps:

1. Install Microsoft Visual C++ 2008 SP1 Redistributable Package (x86). This program is required to run
SQLBase Client.

2. Install SQLBase Client .NET Data Provider ((Applicable for Team Developer 6.1 SP2 and earlier versions) as
follows:

a. Download SQLBase 11.6 Standard for Windows from
http://www.guptatechnologies.com/Services/productDownloads.aspx

b. Run setup.exe.

c. Select Custom.

d. Select the Feature SQLBase 32bit Drivers > .NET Data Provider.

e. Browse to the directory you want to install and finish installation.

f. Edit sql.ini (on IIS Server). Under [win32client.ws32] section, change localhost to the server address
where SQLBase resides.

3. Create a SQLBase System Variable (Windows 7/Vista) as follows:

a. Right-click Computer and select Properties.

b. Select Advanced system settings.

c. Select Environment Variables.

d. Under System Variables, select New.

e. Under Variable name, enter SQLBASE.

f. Under Variable value: Path to the installed SQLBase Client, select OK.

4. Add SQLBase Client to the Path as follows:

a. Repeat steps 3a. thru 3c.

b. Under System variables, select Path > Edit.

c. Under Variable value, enter %SQLBase%; to the front of the Path and select OK.

d. Restart your IIS Server.

Oracle Client Setup on IIS Server

Follow these steps:

1. Install oracle 11gR2 32bit client or server on IIS Server (database proxy server).

http://www.guptatechnologies.com/Services/productDownloads.aspx
http://www.guptatechnologies.com/Services/productDownloads.aspx

30

2. Configure Oracle connection(s) as follows:

a. Go to C:\app\<user>\product\11.2.0\client_1\network\admin.

b. Edit the tnsnames.ora file and add your Oracle connection(s).

SQL Server Client Setup on IIS Server

Refer to ”Configuring an ODBC Data Source” in the Connecting SQLWindows Objects to Databases document.

Follow these steps:

1. Launch odbcad32 on Proxy Server machine.

On a 64-bit Windows OS, go to C:\Windows\SysWOW64 and launch odbcad32.

2. Add system DSN(s) needed by the application.

Notes regarding the proxy server

 Both the database proxy server and the client should be members of the same domain. Access from
different domains or workgroups is rejected. The following error message will appear:

 XBAP applications are stored in a local cache on the client. If you try to run an xbap application from IIS or
local file system and get the following error, you must clear the local application cache.

“Unable to install this application because an application with the same identity is already installed.
To install this application, either modify the manifest version for this application or uninstall the
preexisting application.”

If you make changes in your code/XAML that are not displayed when you run the app, clear the local
application cache.

rundll32 %windir%\system32\dfshim.dll CleanOnlineAppCache

 The IIS Server machine must have .NET Framework (version 3.5 SP1) installed.

31

Chapter 5 – WPF Controls

This chapter explains how to implement WPF controls in your applications, change their properties, and
invoke their methods.

In many cases, WPF controls serve as replacements for visual ActiveX controls. Most ActiveX controls are old
implementations of gauges, HTML viewers, and other controls. These controls usually have an old-fashioned
look and feel. Many third-party WPF controls, however, implement similar functionality with a modern look
and feel. WPF controls make it easy to replace ActiveX controls rather than preserve the outdated ActiveX
controls.

In other words, WPF controls are often available online, they look great, and their implementation is a
preferable alternative to transferring an outdated ActiveX control to a .NET application.

Custom WPF Control in Team Developer

Team Developer contains a control called a Custom WPF Control. This control is much like a frame with an
added, important attribute: Xaml. To use a WPF control (of any kind) in your application, s imply add a
“Custom WPF Control” and then use the Xaml attribute to specify the type of WPF control you will be
implementing. The Xaml attribute is a string containing a xaml fragment for a single WPF control. This control
could be a container that in turn contains one or more additional controls. The xaml fragment must contain
xml namespace declarations for any namespaces that are referenced.

WPF Functions

The following functions are provided for retrieving and setting the values of properties in a WPF control:

SalWPFGetBoolProperty

SalWPFGetDateProperty

SalWPFGetNumericProperty

SalWPFGetStrProperty

SalWPFSetBoolProperty

SalWPFSetDateProperty

SalWPFSetNumericProperty

SalWPFSetStrProperty

In addition, SalWPFInvokeMethod enables you to call methods for WPF controls from within your Team
Developer code.

See the online help for documentation on each of these functions.

WPF Events

The SAM_WPFEvent message appears whenever an event occurs in any WPF control. Thus, any WPF control
can use SAM_WPFEvent and the associated wpf*keywords.

This event has three keywords:

 wpfEventName – A string that indicates which event occurred.

 wpfEventCancelled – Boolean that can be set to cancel the event.

32

 wpfEventHandled – Boolean that marks the event as “handled” in order to inhibit unwanted interference.

The following is an example of the usage of this event and its wpfEventName keyword:

WPF Custom: xSlider Message Actions

 On SAM_WPFEvent

 If wpfEventName ="ValueChanged"

 Call SalWPFGetNumericProperty(xSlider, "Value", nSkX) Set

 sArgsTransform[0] =SalNumberToStrX(nSkX, 0)

 Call SalWPFInvokeMethod(wpfTransformMyTD, "setTransform",

 sArgsTransform, sReturn)

Debugging Applications with WPF Controls

Some WPF controls, such as media players based on Media Element, do not honor the “Current Directory”
when the application is in debug mode. Thus, for WPF controls to work consistently at debug time, you must
provide proper URLs for source files, including a full path to the file required.

Gauges

One type of WPF control is the gauge. Gauges provide a visually interesting display of numerical data, and the
wide variety of WPF gauges available makes them a versatile option.

Gauges have the following properties. All of these properties have string representations, which means they
can be set in the control’s XAML property or via SalWPFSetStrProperty.

Properties for all gauges

Property Type Comments

Min Double Minimum Value

Max Double Maximum Value

IsInteractive Bool Indicates whether the user can change the value by dragging the
needle, bar, etc.

IsLogarithmic Bool Indicates that the gauge should be logarithmic

IsReversed Bool Reverse the gauge

Location ScaleObjectLocation

LogarithmicBase Double

MajorTicks Double The number of major ticks in the gauge. "Major Ticks" are those
specifying the largest size grouping. Thus, if the entire gauge range
consists of 0 through 100, and MajorTicks is set to 4, there will be four
major groups inside that range of 0-100, which will result in tick marks
at 25, 50, and 75. In most gauges, the major tick marks are the locations
where an actual numeric value is drawn on the scale.

33

Property Type Comments

MiddleTicks Double Each major tick section can be subdivided into Middle Ticks. The
MiddleTicks property specifies how many subgroups are displayed
inside each major tick group. A MiddleTicks setting of 2 results in one
medium-sized tick mark drawn between each major-sized tick mark
(one medium tick dividing the two medium tick groups).

MinorTicks Double Similar to MiddleTicks. The MinorTicks property indicates how many
subgroups are displayed within each middle tick group.

ShowFirstLabel Bool Indicates whether the first label should be shown

ShowLastLabel Bool Indicates whether the last label should be shown

Value Double The value of the gauge

IsFlat Bool Use a flat, 2D style

Properties for Radial Gauges, Range Gauges, and Flat Range Gauges

Property Type Comments

Radius Double The radius

StartAngle Double Start angle in degrees (0 = right, 90 = down)

SweepAngl e Double Number of degrees from the start to the end

Properties for Range Gauges and Flat Range Gauges

Property Type Comments

RangeList RangeList List of ranges; for example:
“Red-0-300;Yellow-301-600;Green-601-1000”)

The RangeList property describes the color ranges for a graph.

The string representation has the following format, where <brushn> is any string that can be used to describe
a brush in xaml, and <Minn> and <maxn> are the minimum and maximum values for the range:

<brush1>-<min1>-<max1>;<brush2>-<min2>-<max2>

Examples

For examples of how to implement WPF controls in your applications, change their properties, invoke their
methods, and so on, see the sample applications in your [Team Developer]\Samples\ directory.

34

Chapter 6 – Connectivity in .NET
Applications

This chapter explains how to connect to Oracle, SQL Server, and SQLBase in .NET applications.

Connecting to Oracle

 When developing WPF applications that go against an Oracle database, you must use the Oracle 11gR2
32-bit client.

 The Oracle11gR2 32-bit client can be used to go against an oracle10g or oracle11g database.

 There is no need to configure an Oracle .NET connection because Team Developer automatically maps
your native and OLEDB connections to equivalent .NET connections.

To configure an oracle OLEDB UDL file, follow these steps:

1. Open the command prompt and register the Oracle 11gR2 32bit OLEDB driver:

regsvr32 C:\app\<users>\product\11.2.0\client_1\BIN\OraOLEDB11.dll

2. Launch the "Data Link Properties" dialog for the udl file you want to configure:

rundll32.exe "%ProgramFiles(x86)%\Common Files\System\OLEDB\oledb32.dll",

 OpenDSLFile "<path to udl file>\<udlfile>.udl"

3. Under the Provider tab, select Oracle Provider for OLE DB.

4. Click the Connection tab and enter your Data Source name, username, and password.

35

5. Click Test Connection.

On a 64-bit Windows OS, run regsvr32 and rundll32 from C:\Windows\syswow64.

Connecting to SQLServer

Your SQLServer standard/Native ODBC and OLEDB connections automatically map to equivalent .NET
connections.

ODBC

To set up an odbc connection, follow these steps:

1. Open the command prompt and run odbcad32.

On a 64-bit windows OS, run odbcad32 from the syswow64 directory.

2. In the ODBC Data Source Administrator window, click the Add button.

36

3. In the resulting Create New Data Source dialog, scroll down to SQL Server (for standard odbc connection)
or Native SQLServer (for native odbc connection) and select Finish.

4. In the Create New Data Source to SQL Server dialog, enter a reference name for the server and a
description, select the server you want to connect to, and select Next.

37

5. Select With SQL Server authentication using a login ID and password entered by the user, enter the
Login ID and Password, and click Next.

6. Check the “Change the default database to” check box, select your database from the dropdown, and
click Next.

7. Click Finish.

8. Select Test Data Source and, if the test is successful, click OK.

9. Exit the ODBC Data Source Administrator and open up the sql.ini in your Team Developer directory.

10. Uncomment the line of code “comdll=sqlodb32” and insert the following line of code under “[odbcrtr]”
using the reference name you gave your server:

remotedbname=[RefName],dns=[RefName] (for example,

 remotedbname=[SVR1],dns=[SVR1])

SQL Server TIMESTAMP

Due to strict Data Type Matching inWPF applications, SqlServer TIMESTAMPS (which are often used as Row
IDs) are handled somewhat differently than they are in WIN32. Because TIMESTAMPs are binary data types,

38

to bind a timestamp to a string you must call "SetLongBindDatatype" after running SqlPrepare and before
running SqlExecute, as in the following example:

Call SqlPrepare(hSql,"SELECT ROWID INTO :dfString FROM TEST") Call

SqlSetLongBindDatatype(1, 23)

Call SqlExecute(hSql)

The resulting string will be a string of bytes packed into a double-byte Unicode string. It will not be human
readable, but can be used to compare the contents of one row to another.

SQLBase

.NET connectivity in SQLBase is a mirror of native. No additional actions are required on the part of the user.

39

Chapter 7 – .NET Explorer

This chapter describes .NET Explorer, the assemblies you can access, and the libraries you can build with it.

.NET Explorer is a powerful tool that allows you to generate include libraries (APLs) from existing .NET
assemblies. The resulting APLs can be included in your Team Developer application whether your build target
is Win32 or .NET.

Using .NET Explorer

Follow these steps:

1. In the Tools menu, select .NET Explorer. The following window opens:

2. Click Next.

3. The next screen asks you to select GAC Assembly or Assembly File.

 GAC Assembly – Choose this option to import an assembly from the Global Assembly Cache (a
collection of .NET assemblies that exist on your machine).

 Assembly File – Choose this option to import a custom assembly.

Make your selection and click Next.

4. The next window differs according to the option you selected in the previous step.

If you chose GAC Assembly, you will see a screen similar to the following:

40

If you chose Assembly File, you will see a data field and Browse button where you can indicate the
location of the assembly file.

This step and the next step assume that you chose GAC Assembly. See steps 6 and 7 for information that
applies to either option.

Select the assembly you want to import and click Next.

5. The next screen lists classes contained in the assembly you selected.

Select the class(es) you want to import. Use Shift+click, Ctrl+click, or click and drag to select multiple
classes.

You must also indicate the output path for the APL that will be generated. Type the path in the Output
Path field or use the Browse button to navigate to the desired directory.

41

Click Next.

6. When you see the following message, click Finish.

.NET Explorer closes and, assuming Team Developer is still the most recently active application, returns
you to your application outline.

The generated APL is not automatically included in your outline. Therefore, repeat steps 1-6 to generate
as many APLs as you want.

Note: .NET assemblies (DLLs) created in Visual Studio must be generated with target framework set to .NET
Framework 3.5 or .NET Framework 4.0. Otherwise, .NET Explorer displays the following error
message when you try to import the DLL: “Could not load the selected assembly because its CPU
architecture is not supported.”

7. To include the generated APL, right-click the Libraries section of your outline, select Add Next Level and
File Include.

8. Browse to the location you indicated in the Output Path (step 5), and select the new APL file. If it does
not reside in the same directory as your application outline, click the “Append Path To File Name” check
box, and click Open.

About AXLs, APLs, DLLs

Definitions

In this chapter, AXL, DLL, and APL files are defined as follows:

 AXL. An AXL file is a description (written in XML) of the symbols being imported from the external
assembly. It must be included for a .NET project.

 DLL. A DLL is a library that contains compiled code for functions that will be called from the application.

 APL. Like a DLL, an APL is a library that contains code for functions that will be called from the application.

.NET Explorer Generates APL and AXL

When you import a .NET assembly and create an APL via .NET Explorer, an AXL file of the same name is also
generated. As explained previously, the APL file is the one you include in your outline. When you include the
APL, Team Developer automatically imports the AXL file as well. You can see this in the External Assemblies
section of the outline.

Technically, the AXL is only needed if your finished product will be a .NET application. The APL is only needed
if your finished product will be a Win32 application. Both files are included in the outline for two reasons:

 With both files included, you can compile your application to .NET or Win32 without changing your file
inclusions.

 The Coding Assistant draws upon the APL for function names, parameters, etc. Thus, if you only include
the AXL file, the coding assistant’s features will be limited.

42

.NET SAL Library Generates DLL and AXL

When you create a .NET SAL Library with Team Developer, the compiled project consists of two files: a DLL
and an AXL. In this case, you will include the AXL file (in the External Assemblies section of your outline).
Team Developer looks in the same directory for the DLL and automatically includes it.

Variables Based on Imported .NET Classes

When you create a variable based on one of the imported .NET classes, the instantiation of the variable is not
always automatic.

When using a Win32 build setting, you need to explicitly instantiate your user-defined variable (UDV) by
calling one of the constructor methods in the code generated by .NET Explorer. There will be one method for
each version of the constructor available.

When using a .NET build setting, the generated code will automatically instantiate the UDV if there is a
default constructor available. If there is no default constructor available, then you will have to explicitly call
one of the constructor methods, as in Win32.

There is no harm in calling the method for the default constructor, even if it was already called automatically.
In this case, the UDV will simply be re-instantiated unnecessarily. However, since you must call the default
constructor explicitly in order to compile to Win32, calling the default constructor method explicitly will allow
you to compile your code in both build settings with no change in the code.

Users wanting to resize a native .NET array must do so within their external code. With the exception of
SalArrayGetUpperBound, all SalArray functions reports an error when compiling to .NET applications.

.NET Assemblies Created in Visual Studio

Using Visual Studio 2008 and Visual Studio 2010, users can generate Class Libraries in any CLR language (C++,
C# , VB.NET). .NET Explorer can be used to generate equivalent APLs and AXLs that can be used in Team
Developer applications.

43

Chapter 8 – Debugging DLLs

This chapter describes various ways to debug .NET Class Libraries and Web services from with Team
Developer .NET applications. SQLWindows allows customers to build .NET applications or libraries as 64-bit,
but, for debugging purposes, you should choose 32-bit as the target CPU type.

.NET Class Libraries

Classes provide reusable code in the form of objects. A class library contains one or more classes that can be
called on to perform specific actions. Users can develop .NET class libraries using Visual Studio or
SQLWindows. Team Developer supports importing class libraries that are targeted to either the 3.5 or 4.0
version of .NET Framework. For more details on how to make class libraries using Visual Studio, visit:

http://msdn.microsoft.com/en-us/library/f3cye135(v=vs.90).aspx

For more information on how to make class libraries using SQLWindows, check Team Developer IDE .NET
build settings.

To use and debug .NET class libraries in Team Developer .NET applications, follow these steps:

1. Build the class library using Visual Studio. Make sure to generate a PDB file for the library.

2. Use .NET Explorer and import the class library generated in Step 1 to create corresponding APL and AXL
files.

3. Open the Team Developer application that is using the library and set the breakpoint at the function call.
Make sure build settings for the application are set to either .NET WPF Desktop or .NET WPF Browser.

4. Press F7 from TD IDE and run the application in Debug mode. When the breakpoint is hit, click Step-In
and observe that SQLWindows opens the corresponding library source file in a separate code viewer.

5. Keep clicking Step-In and observe how the focus in the separate code viewer moves as it executes the
code functions.

Alternatively, the user can open a separate code viewer by selecting the “Show CodeViewer” menu item
under the popup menu “Debug” in the IDE as the following shows:

http://msdn.microsoft.com/en-us/library/f3cye135(v%3Dvs.90).aspx

44

The following shows the result of when SQLWindows steps into other sources:

45

46

.NET Web Services

SQLWindows allows debugging of .NET Web services that are created with SQLWindows and hosted onto IIS.
Refer to WebServicesPart1.PDF and WebServicesPart2.PDF for more information on how to create and use
.NET Web services with Team Developer.

To debug .NET Web services hosted on a local machine, follow these steps:

1. Create a Web service dll and corresponding asmx file using SQLWindow’s .NET WebServices build setting
(DataTypesTest.apt).

2. Host the generated Web service onto IIS .

3. Open Team Developer as Administrator.

4. Open the Web service source DataTypesTest.apt from the IDE.

5. Select the popup menu Debug and the “Attach to web service” menu item. This command attaches the
current code to the Web service process (w3wp).

6. Access the Web service from Internet Explorer using the corresponding asmx file and observe that Team
Developer steps into the current code.

Currently, the new debugger can attach/debug only in 32-bit because Team Developer is a 32-bit application.
SQLWindows allows customers to build .NET applications or libraries as 64 -bit. However, for debugging
purposes, you should choose 32-bit as the target CPU type. The following is an illustration.

47

The following illustrates a Web Service debug:

48

.NET SAL Libraries

.NET SAL libraries are equivalent to Dynamic Libraries (.APD) in WIN32. To debug a SAL library, users need a
consumer application that includes .NET SAL libraries.

1. Run the consumer application (WPF EXE).

2. Open .NET SAL library source in Team Developer IDE as administrator.

3. From Team Developer , select the “Debug” popup menu, the “Attach to Process” menu item, and the
consumer application EXE.

49

4. Step into the application when the breakpoint is hit.

The menu item “Attach to the process” can be seen in the following:

	.NET Projects
	Product Version 7.0
	Chapter 1 – Introduction to .NET Projects
	.NET Build Settings
	.NET Target Types
	Other Settings
	64-bit Applications
	Signing Assembly

	Compiling Process Overview
	What Team Developer Does
	Compiling from the Command Line
	Data Type Matching
	.NET Source Code
	GUI Functions in DLLs

	Chapter 2 – Libraries and Functions
	QuickObjects
	QuickTab2Tab Tool

	Visual Toolchest
	Stand-Alone Functions
	VT Libraries

	External Libraries and APIs in General
	Datatypes in External DLLs
	user32.dll Not Supported in .NET
	Assembly Information for APLs

	Unsupported SAL Functions
	Unsupported APLs
	Supported WM_* Messages

	Chapter 3 – WPF Applications
	WPF Applications
	XAML Files
	Customizing XAML files

	Deploying WPF Desktop Applications
	WPF Browser Applications in Firefox
	WPF Browser Applications in Internet Explorer

	Chapter 4 – Publishing XBAP Applications
	Publishing XBAP Applications (WPF Browser)
	Build Settings for WPF Browser Application
	Publishing a WPF Browser Application to IIS
	IIS Troubleshooting
	Database Proxy Service
	SQLBase Client Setup on IIS Server
	Oracle Client Setup on IIS Server
	SQL Server Client Setup on IIS Server
	Notes regarding the proxy server

	Chapter 5 – WPF Controls
	Custom WPF Control in Team Developer
	WPF Functions
	WPF Events
	Debugging Applications with WPF Controls

	Gauges
	Properties for all gauges
	Properties for Radial Gauges, Range Gauges, and Flat Range Gauges
	Properties for Range Gauges and Flat Range Gauges

	Examples

	Chapter 6 – Connectivity in .NET Applications
	Connecting to Oracle
	Connecting to SQLServer
	ODBC
	SQL Server TIMESTAMP

	SQLBase

	Chapter 7 – .NET Explorer
	Using .NET Explorer
	About AXLs, APLs, DLLs
	Definitions
	.NET Explorer Generates APL and AXL
	.NET SAL Library Generates DLL and AXL

	Variables Based on Imported .NET Classes
	.NET Assemblies Created in Visual Studio

	Chapter 8 – Debugging DLLs
	.NET Class Libraries
	.NET Web Services
	.NET SAL Libraries

